
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Structural Simulation Toolkit
Lunch & Learn

September, 2015

Branden Moore (5638)

SST Lunch & Learn: September, 2015

SAND2015-10442R

SST Lunch & Learn

 Introduction to SST

 Examples of use at Sandia

 Framework Overview

 Building a Simulator

1

SST Lunch & Learn: September, 2015

Why SST?

 Problem: Simulation is slow
 Tradeoff between accuracy and time to simulate

 Many simulators are serial, unable to simulate very large systems

 Problem: Lack of simulator flexibility
 Tightly-coupled simulations: faster but difficult to modify

 Difficult to simulate at different levels of accuracy

The Structural Simulation Toolkit:

A parallel, discrete-event simulation framework

focused on scalability and flexibility.

SST Lunch & Learn: September, 2015

2

SST Key Features

 Parallel
 Built from the ground up to be scalable
 Demonstrated scaling to 512+ processors, Millions of Components
 Supports both MPI and Thread-based parallelism

 Flexible
 Enables “mix and match” of simulation components
 Timescale agnostic (femtoseconds to years)
 Customize tradeoff between accuracy and simulation time

 E.g., cycle-accurate network with trace-driven endpoints

 Non-viral, Open Source license

 Mature, but active
 Version 5.1 Released in September, 2015
 Current SVN/git history back to 2009
 Over 117k SLOC (Core alone: ~20k SLOC)

SST Lunch & Learn: September, 2015

3

SST Project Collaboration

SST Lunch & Learn: September, 2015

4
Primary development: Sandia 1420

EXAMPLE USE CASES

SST Lunch & Learn: September, 2015

5

Case #1: Multi-level memory

SST Lunch & Learn: September, 2015

 Future memory systems will be Multi-Level Memory

 MLM can potentially offer more “usable” bandwidth, less cost

 Challenges:
 substantial software and hardware (co-)design

 no “one size fits all”

 SST can explore HW & SW organization

AMD Intel Marvell 6

5

Intel Proprietary
© 2014 Intel Corporation

The information on this page is subject to the use and disclosure restrictions provided on the cover page to
this document.

On package Memory Option

JEDEC std DRAM packaged for on-package use

Example – QDP die package

4 groups – custom POP stack

Energy - LPDDR style die (aggressive I/O power targets)

Proximity to main die to hold interface power down

8-die stack occupying remaining space of package

Analyzing Memory Accesses

 Capture post-cache accesses

 Setup:
 “Quads” of 4 cores

 Histogram generator
implemented as a prefetcher

SST Lunch & Learn: September, 2015

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

Merlin
Router

Directory
Controller

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

DDR

Histogram

Ariel Trace Capture

PIN

l2SnoopParams = {
"prefetcher": "cassini.AddrHistogrammer",
"prefetcher.histo_bin_width": 4096,
"prefetcher.heap_begin": "1 GiB",
"prefetcher.heap_end": "9 GiB"

}

7

Irregular

Analysis: Diverse Patterns

Few, Well-defined
RegionsP

h
ys

ic
a
l
a
d
d
re

ss
 h

is
to

g
ra

m
s

Regular Irregular

Multiple
Regions

SST Lunch & Learn: September, 2015

8

Multi-Level Memory Simulation

 Multiple memory types:
 DDR DRAM (DramSim)

 HMC-like Stacked Memory (VaultSim)

 NVRAM (NVDIMMSim)

 Addresses can be interleaved, or
blocked between memory types

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

Merlin
Router

Directory
Controller

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

DDR

Ariel Trace Capture

PIN

Directory
Controller

DDR

Directory
Controller

Logic
Layer

Stacked
Vault

dc.addParams({
"addr_range_start": start_pos,
"addr_range_end": end_pos,
"interleave_size": interleave_size/1024,
"interleave_step": interleave_step,
"entry_cache_size": 128*1024,
"clock": memclock,
"network_address": netPort

})

SST Lunch & Learn: September, 2015

9

MLM Explorations

 Analysis of application
memory use distribution

 Quick exploration of “Naïve”
address assignment, capacity
ratios on performance

 Not shown: Feedback results
from histograms to determine
address assignment

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

DDR+Only" 18%"HMC"82%"DDR" 18%"HMC"36%"
DDR(cache)"64%"NV"

18%"HMC"18%"DDR"
(cache)"%"64NV"

MiniFE&Simula, ons&

Performance"

Perf/Cost"

F igur e 5: M iniFE Simulat ion r esul t s

SST Lunch & Learn: September, 2015

10

Case #2: Network

 What is the network latency achieved by different platforms
during a 3D halo exchange?
 Halo exchange: Exchange boundary data with neighbors

 Platform 1: “Fat” nodes – Eight 20TF/s cores per node

 Platform 2: “Medium” nodes – Two 20TF/s cores per node

 Platform 3: “Thin” nodes – One 10TF/s core per node

 Evaluate for 1K to 64K participating nodes

 Evaluate at three different link bandwidths
 12.5GB/s, 50GB/s, 125GB/s

SST Lunch & Learn: September, 2015

11

Network: Simulation setup

 Use Ember to model nodes
 Lightweight model focused on communication pattern

 Estimates compute time using the node’s FLOPS

 Detailed model of communication

 Enables scaling the simulated system to a larger number of nodes

 Compared to a detailed processor model + memory model

 Use Firefly to model the NIC

 Use Merlin to model the network
 Detailed, cycle-accurate models for network (routers, links, etc.)

SST Lunch & Learn: September, 2015

12

Scaling with Bandwidth

SST Lunch & Learn: September, 2015

13

Link Bandwidth = 12.5GB/s

Link Bandwidth = 50GB/s Link Bandwidth = 125GB/s

SST CORE: FRAMEWORK FOR
PARALLEL SIMULATION

SST Lunch & Learn: September, 2015

14

Key Concepts

 SST::Component

 Simulation model

 SST::Link

 Communication path between two components

 SST::Event

 A discrete event

 SST::SubComponent

 Add functionality to Components

 SST::Module

 Add functionality to framework

 Element Libraries

 Contain Components and Modules in a Shared
Library format

 Included manifest documents components,
features, parameters and interactions

S
S

T:
:L

in
k

SST::Component
CPU

EventHandler

SST::Component
Cache

EventHandler

SST::Event
Load

SST Lunch & Learn: September, 2015

15

Component

 Basic building block of a simulation model
 E.g., processor, cache, network router, etc.

 Performs the actual simulation
 Zero Simulation time while operating
 Time advances on events

 Can send events to itself for timing purposes

 Events are issued on components
 Can register Clock Events
 Receive events over links

 Communicate with other components
 Components define ports, links connect ports between components
 Polled: Register a clock handler to poll the link
 Interrupt: Register an event handler to be called when an event arrives
 Both: Receive events on interrupt, send events on clock

 SubComponents and Modules provide additional functionality

SST Lunch & Learn: September, 2015

16

Link

 Connects two components
 Connect a specific “Port” on component A to a “Port” on component B

 The ONLY mechanism by which components communicate
 Necessary for parallel simulation

 Has a minimum, non-zero latency for communication
 Except self-links
 Except during initialization

 Transparently handles any MPI communication

Component A Component B

P
o

rt
 X

P
o

rt
 Y

Link 1

SST Lunch & Learn: September, 2015

17

Event

 Unit of communication between two components
 Packet format is up to the communicating components

 Base class is SST::Event

 Has a delivery time
 Typically calculated from a link

 Can specify priorities.

 Some standardized interfaces
 Facilitate “mix and match” capability

 sst/core/interfaces/

 Memory (simpleMem)
 Defines commands & event format for communication with memory

 Network (simpleNetwork)
 Defines a header for events sent through a network component

SST Lunch & Learn: September, 2015

18

SST’s discrete-event algorithm

 Simulations are comprised of components connected by links

 Components interact by sending events over links

 Each link has a minimum latency

 Components can load subComponents and modules for
additional functionality

SST Lunch & Learn: September, 2015

Component Component

SST Core

Configuratio
n

Parititioning

Link

Event

Instantiation Time
Coordination

Parallel
Communication

SST
Component
Type: Core

SST
Component
Type: Cache

SST
Component
Type: Core

SST
Component
Type: Cache

SST
Component
Type: NoC

Router

SST
Component
Type: NoC

Router

SST Link
Latency: 1ns

SST Link
Latency: 2ns

SST Link
Latency: 2ns

SST Link
Latency: 1ns

S
S

T
 L

in
k

L
a
te

n
c
y
:
4
n
s

19

Simulation lifecycle

 Birth
 Create graph of components using Python configuration file

 Partition graph and assign components to parallel ranks

 Instantiate components

 Connect components via links

 Initialize components using their init() functions

 Setup components using their setup() functions

 Life
 Send events

 Synchronization between parallel ranks (hidden from user)

 Manage clock and event handlers

 Death
 Finalize components using their finish() functions

 Output statistics

 Cleanup simulation, delete components

SST Lunch & Learn: September, 2015

20

SST in parallel
 SST was designed from the ground up

to enable scalable, parallel simulations
 Conservative, Distance-based

Optimization strategy

 Components are distributed among
MPI ranks and Threads

 Links enable parallelism
 Components only communicate via links

 Specified link-latency determines
synchronization rate

 Transparently handle any MPI
communication & thread synchronization

 Multiple partitioning strategies
 Linear, RR, “Simple”, Zoltan-based

 Simulation writer can provide own
partitioning

MPI Rank 0

MPI Rank 0 MPI Rank 1

Thread 0Thread 0 Thread 1Thread 1

Comp0 Comp2

Thread 0Thread 0 Thread 1Thread 1

Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Comp0 Comp2 Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Same configuration file

SST Lunch & Learn: September, 2015

21

SST FOR BUILDING SIMULATORS

SST Lunch & Learn: September, 2015

22

What makes a Simulator?

 Simulation Engine
 Handle events, communication between components

 Simulation Models
 Perform actual simulation / emulation

 System Construction
 Connect models together, configure the system to simulate

23

SST Lunch & Learn: September, 2015

SST Core

Element Libraries

Python Module

SST as a Framework

 Framework Provides:
 Mature PDES Engine

 Serial or parallel (Multi-Thread and Multi-Rank)

 Optimizations for very large simulators

– “Sleeping” components

– Shared Memory Lookup Tables

– Memory Management

 API for building simulation components

 Manifests for documentation

 Utilities for common simulation challenges

– Parameters/Configuration, Statistics gathering, repeatable PRNG

 Python Module for building Simulators

 Configure Components and Links via Python scripts

 Supports embedding additional modules in Element Libraries

24

SST Lunch & Learn: September, 2015

Sandia-provided Models

 Processors

 Ariel – PIN-based

 Prospero – Trace-based

 Miranda – Pattern-based

 Memory

 MemHierarchy – Caches,
“Main Memory”

 VaultSimC - Stacked memory

 Cassini – Cache prefetchers

 Network driver

 Ember – Pattern-based

 Firefly – communication
protocols

 Hermes - MPI-like driver
interface

 Zodiac – trace-based

 Network models

 Merlin – HPC Network
simulator

 Other

 Scheduler

 simpleElementExample

SST Lunch & Learn: September, 2015

25

Building custom Components

 Create a C++ class which inherits from ‘SST::Component’
 Constructor:

 Will be passed an SST::Params object with configuration information

 Registers any clocks and their event handlers

 Configures links with event handlers

 Initialization phase:
 Can pass data to peers (pre-fill memory, establish global state)

 Run time:
 Respond to events (clocks, links)

 Simulate target model

 Send new events

 Record statistics

 Build an Element Library to describe this component (or group of
components)

26

SST Lunch & Learn: September, 2015

Element libraries

 Collection of related components, subComponents, and
modules

 Includes a manifest
 Declares how to create new component instances

 Documents Components, Parameters, Ports and Statistics

 Implemented as a Shared Library with a well-known symbol
for the Manifest

 SST comes with many built-in libraries from Sandia
 Processors, memory, network, etc.

 Tested for inter-library compatibility

SST Lunch & Learn: September, 2015

27

Building a Simulator

 SST provides a Python Module
with an API to connect and
configure simulation components
to build a simulator
 import sst

 At run time:
 sst ‘mySim.py’
 SST will launch Python interpreter,

and execute ‘mySim.py’
 Script should instantiate all needed

components, and provide their
parameters

 Command-line arguments can be
passed to the interpreter

 --model-options “-a -b 5”

 Normal python interpreter
functionality available

 import getopt
 import antigravity

import sst

Define the simulation components

comp_msgGen0 = sst.Component("msgGen0”,

"simpleElementExample.simpleMessageGeneratorComponent")

comp_msgGen0.addParams({

"outputinfo" : 0,

"sendcount" : 10000,

"clock" : "1MHz"

})

comp_msgGen1 = sst.Component("msgGen1”,

"simpleElementExample.simpleMessageGeneratorComponent")

comp_msgGen1.addParams({

"outputinfo" : 0,

"sendcount" : 100000,

"clock" : "1MHz"

})

myLink = sst.Link("myLink")

myLink.connect((comp_msgGen0, "remoteComponent", "1us"),

(comp_msgGen1, "remoteComponent", "1us"))

SST Lunch & Learn: September, 2015

28

Python Module – Defining
Components
 Define: sst.Component(“name”, “type”)

 Configure: addParams ({ “parameter” : value, … })

network = sst.Component(“router”, “merlin.hr_router”)
network.addParams({

“xbar_bw” : “51.2GB/s”,
“link_bw” : “25.6GB/s”,
“num_ports” : 4,
“flit_size” : “72B”
“topology” : “merlin.singlerouter”,
“id” : 0,
“input_buf_size” : “2KB”,
“output_buf_size” : “2KB”

})

Instance name Component type

Parameters

SST Lunch & Learn: September, 2015

29

Element Library

Python Module – Defining Links

 Example: Connect an L2 cache (l2cache0) to network
 Create a link: sst.Link(“name”)

 Define link endpoints: connect(endpoint1, endpoint2)

 Endpoint is defined as: (Component, Port, Latency)

 Note: Latencies of the two endpoints can differ

…
l2cache0_network_link = sst.Link(“l2cache0_network_link”)
…
l2cache0_network_link.connect(

(l2cache0, “directory”, “500ps”),
(network, “port0”, “1ns”))

…

Link name

Endpoints

SST Lunch & Learn: September, 2015

30

SSTInfo: Getting component info

 Prints parameters, port names, statistics, …

$ sstinfo memHierarchy.Cache
PROCESSED 25 .so (SST ELEMENT) FILES FOUND IN DIRECTORY /home/sst/build/lib/sst
Filtering output on Element.Component = “memHierarchy.Cache”
==
ELEMENT 18 = memHierarchy (Cache Hierarchy)
COMPONENT 0 = Cache [MEMORY COMPONENT] (Cache Component)
NUM PARAMETERS = 32

PARAMETER 0 = cache_frequency (Clock frequency with units. For L1s, this is
usually the same as the CPU's frequency.) [REQUIRED]

…
PARAMETER 21 = network_bw (Network link bandwidth.) [1GB/s]
…

NUM PORTS = 4
…
PORT 3 [1 Valid Events] = directory (Network link port to directory)

VALID EVENT 0 = MemHierarchy.MemRtrEvent
…

NUM STATISTICS = 32

Optionally filter for a specific component

Parameter Definition

“REQUIRED” or
default value

Port name

Definition

Type of event(s) used on the link

SST Lunch & Learn: September, 2015

31

Running SST

 Usage: sst [options] configFile.py

 Common options:
-v | --verbose Print verbose information during runtime

--debug-file <filename> Send debugging output to specified file (default:
sst_output)

--add-lib-path <dirname> Add <dirname> to search path for element libraries

--heartbeat-period <period> Every <period> time, print a heartbeat message

--paritioner <zoltan | self | simple |
rrobin | linear | lib.partitioner.name>

Specify the partitioning mechanism for parallel runs

--model-options “<args>” Command line arguments to send to the Python
configuration file

--output-partition <filename> Write partitioning information to <filename>

--output-dot <filename> Output a graph representing the configuration in
“Dot” format to <filename>

SST Lunch & Learn: September, 2015

32

Finally…

 SST Wiki: http://www.sst-simulator.org/
 Downloading, installing, and running SST

 Element libraries and external components

 Guides for extending SST

 Information on APIs

 Information about current development efforts

 Mailing lists:
 sst-user: For questions on building, compiling, extending, and using SST

 sst-developer: For questions on developing SST components

 sst-announce: Release announcements

 sst-commit: Notification of commits to the SVN repository

 Subscribe via the wiki

SST Lunch & Learn: September, 2015

33

http://www.sst-simulator.org/
http://www.sst-simulator.org/
http://www.sst-simulator.org/

THANK YOU

SST Lunch & Learn: September, 2015

34

Backup

SST Lunch & Learn: September, 2015

35

Ariel: PIN-based processor

 Lightweight processor core model

 Uses Intel’s PIN tools and XED decoders to analyze binaries
 Runs x86, x86-64, SSE/AVX, etc. compiled binaries

 Supports fixed thread count parallelism (OpenMP, Qthreads, etc.)

 Passes information to virtual core in SST

 Implements SST’s memory interface to interact with a
memory model

SST Lunch & Learn: September, 2015

36

Ariel: The tradeoff

 Pros:
 Faster than cycle-accurate processor models (e.g., Gem5)

 Reasonable approximation for studies on memory system
performance

 Especially for heavily memory-bound applications

 Reasonable model of thread interactions

 Cons
 Slower than trace/pattern-based processor models

 Does not give cycle-reproducible results

 Use of threads can disturb reproducibility

 Non-deterministic results

 Not compatible with non-x86 binaries

SST Lunch & Learn: September, 2015

37

Ariel: Architecture

User Application
Binary

Ariel PIN Tool

…

(Instruction Stream
1 per thread)

…

Virtual “Ariel” Core

Virtual “Ariel” Processor

(memEvent Target)

SST Ariel Component

…

memHierarchy Cache
…

…

Unmodified user binary
(use your standard compiler etc)

SST Lunch & Learn: September, 2015

38

Ariel: Details

 Ariel’s virtual cores
 Instruction information currently limited to memory ops or instructions

with no memory operands

 Clocked: Reads instruction stream in chunks but processes on clock

 Back pressure from FIFO halts real binary execution

 Does not maintain dependence order or register locations (yet)!

 Performs a TLB mapping of virtual-to-physical addresses

 Key user knobs
 Memory ops issued/cycle

 Load/store queue size

 Memory interface
 Generates memEvents which can be sent to a cache model

 Tracks basic statistics (request counts, split-cache line loads, etc.)

SST Lunch & Learn: September, 2015

39

Prospero: Trace-based processor

 Trace-based processor model
 Reads memory ops from a file and passes to the simulated memory

system

 “Single core” but can use multiple trace files to emulate threaded or
MPI-style applications

 Supports arbitrary length reads to account for variable vector widths

 Performs “first touch” virtual to physical mapping

 Comes with Prospero Trace Tool to generate traces
 Or can generate your own and translate to Prospero’s format

SST Lunch & Learn: September, 2015

40

Prospero: The tradeoff

 Pros
 Faster than Ariel and Gem5

 Provided you can get a trace

 Good for heavily memory-bound applications

 Reasonable approximation to memory system performance

 Cons
 Traces can be very large

 Requires good I/O system to store and read the trace

 Traces are less flexible than actual execution

 Capture a single execution stream using a single application input

SST Lunch & Learn: September, 2015

41

Miranda: Pattern-based processor

 Extremely light-weight processor model
 Generates specific memory address patterns

 Current patterns
 Strided accesses (single stream)

 Forward and reverse strides

 Random accesses

 GUPS

 STREAM benchmark

 In-order & out-of-order CPU

 3D stencil

 Sparse matrix vector multiply (SpMV)

 Copy (~array copy)

SST Lunch & Learn: September, 2015

42

Miranda: The tradeoffs

 Pros
 Very lightweight – no binary, no trace

 Good for applications whose address patterns are predictable

 E.g., not much pointer-chasing

 Cons
 Need a generator for the memory pattern of interest

 Requires a good understanding of the pattern

SST Lunch & Learn: September, 2015

43

MemHierarchy: Memory system

 Cycle-accurate cache and memory simulation
 Inter- and intra-socket coherence

 Multiple main memory models

 Highly configurable
 Can model any number of caches (L10s!)

 Arbitrary topologies, multiple memories

 Single- and multi-socket configurations

 Capable of modeling modern memory hierarchies
 Intel core i7, Xeon Phi

 Arm Cortex A8, A7, A15, A53, A57

 SPARC T6

SST Lunch & Learn: September, 2015

44

MemHierarchy: Components

 Cache
 Includes coherence protocols (MSI, MESI, etc.)

 Bus

 Directory controller
 Inter-socket coherence

 Memory controller
 Backs up simulated memory, interfaces with memory backends

 Memory backends
 Main memory simulators for DRAM, stacked DRAM, NVRAM, etc.

 TrivialCPU & StreamCPU
 Very simple memory request generators for testing

SST Lunch & Learn: September, 2015

45

MemHierarchy: Caches

 Store actual data

 Set associative, configurable replacement policies
 LRU, LFU, Random, MRU, NMRU (not MRU)

 Use MSHRs to buffer outstanding requests

 Can communicate via a direct link or over a bus or network
 Implements simpleNetwork interface via the “MemNIC” module

 Can model a single shared cache or multiple cache slices

 Handles atomics, LLSC, non-cacheable requests, etc.

 Prefetch capability by using the Cassini element library

SST Lunch & Learn: September, 2015

46

MemHierarchy: Cache structure

CacheController
• Routes incoming events to handlers
• Manages retry of buffered events in

the MSHRs
• Manages cache allocations and

evictions

CoherenceController
• Manages coherence state
• Receives events from CacheController
• Sends outgoing events

• Forwarded requests, responses, etc.
• Decides when events need to stall

MSHRs
• Buffers stalled

and blocked
events

CacheArray
• Stores cache lines –

data and coherence
state

• Replacements via the
replacement policy
manager

SST Lunch & Learn: September, 2015

47

MemHierarchy: Main memory

 MemoryController
 Contains a ‘backing store’ for simulated data

 Can communicate over a network or via a direct link with a cache or
directory

 Interfaces with multiple memory backends

 Available backends
 SimpleMem – basic read/write with associated latencies

 DRAMSim2 – DRAM (external)

 NVDIMMSim – Non-volatile memory (e.g., Flash) (external)

 HybridSim – non-volatile memory with a DRAM cache (external)

 VaultSimC – stacked DRAM

SST Lunch & Learn: September, 2015

48

Merlin: Network simulator

 Low-level, flexible networking components that can be used
to simulate high-speed networks (machine level) or on-chip
networks

 Capabilities
 High radix router model (hr_router)

 Topologies – mesh, n-dim tori, fat-tree, dragonfly

 Many ways to drive a network
 Simple traffic generation models

 Nearest neighbor, uniform, uniform w/ hotspot, normal, binomial

 MemHierarchy

 Lightweight network endpoint models (Ember – coming up next)

 Or, make your own

SST Lunch & Learn: September, 2015

49

Ember: Network traffic generator

 Light-weight endpoint for modeling network traffic
 Enables large-scale simulation of networks where detailed modeling

of endpoints would be expensive

 Packages patterns as motifs
 Can encode a high level of complexity in the patterns

 Generic method for users to extend SST with additional
communication patterns

 Intended to be a driver for the Hermes, Firefly, and Merlin
communication modeling stack
 Uses Hermes message API to create communications

 Abstracted from low-level, allowing modular reuse of additional
hardware models

SST Lunch & Learn: September, 2015

50

Ember: Overview

User
BinaryEmber Engine

Hermes API

Firefly

Merlin Network

Ember Motif

Message Passing Semantics
Collectives, Matching etc

Packetization and Byte Movement Engine
Generates packets and coordinates with network

Flit Level Movement, Routing, Delivery
Moves flits across network, timing etc

Event to Message Call, Motif Management
Handles the tracking of the motif

High Level Communication Pattern and Logic
Generates communication events

SST Lunch & Learn: September, 2015

51

Ember: Motifs

 Motifs are lightweight patterns of communication
 Tend to have very small state

 Extracted from parent applications

 Models as an MPI program (serial flow of control)

 Many motifs acting in the simulation create the parallel behavior

 Example motifs
 Halo exchanges (1, 2, and 3D)

 MPI collections – reductions, all-reduce, gather, barrier

 Communication sweeping (Sweep3D, LU, etc.)

SST Lunch & Learn: September, 2015

52

Ember: Motifs (continued)

 The EmberEngine creates and manages the motif
 Creates an event queue which the motif adds events to when probed

 The Engine executes the queued events in order, converting them to
message semantic calls as needed

 When the queue is empty, the motif is probed again for events

 Events correspond to a specific action
 E.g., send, recv, allreduce, compute-for-a-period, wait, etc.

SST Lunch & Learn: September, 2015

53

Firefly: Network traffic

 Purpose: Create network traffic, based on application
communication patterns, at large scale
 Enables testing the impact of network topologies and technologies on

application communication at very large scale

 Scales to 1 million nodes

 Supports multiple “cores” per Node
 Interaction between cores limited to message passing

 Supports space sharing of the network
 Multiple “apps” running simultaneously

SST Lunch & Learn: September, 2015

54

Firefly: Simulating large networks

 A network node consists of
 Driver (the “application”)

 NIC

 Router

 Nodes are connected together via
the routers to form the network
 Fat tree, torus, etc.

 Firefly is the interface between the
driver and the router
 Message passing library Firefly

Hades

 NIC Firefly NIC

Ember
(driver)

Firefly Hades

Firefly NIC

Merlin Router

SST Lunch & Learn: September, 2015

55

Scheduler

 Models HPC system-wide job scheduling

 Three components
 Sched: schedules and allocates resources for a stream of jobs

 Node: runs scheduled jobs on their allocated resources

 FaultInjection: injects failures onto the resources

 The scheduler is currently a stand-alone element library
 The schedComponent and nodeComponent must be used together

 The faultInjectionComponent is optional

SST Lunch & Learn: September, 2015

56

